#### North Carolina Society of Gastroenterology 2024 Annual Meeting



#### BACK TO THE FUTURE OF GI ENDOSCOPY: ARTIFICIAL INTELLIGENCE, THE NEXT FRONTIER?

Jeremy R. Glissen Brown MD, MSc Assistant Professor of Medicine Duke University Medical Center

Joint Providership



American Society for Gastrointestinal Endoscopy

### Disclosures

- Consultant for Medtronic
- Consultant for Olympus

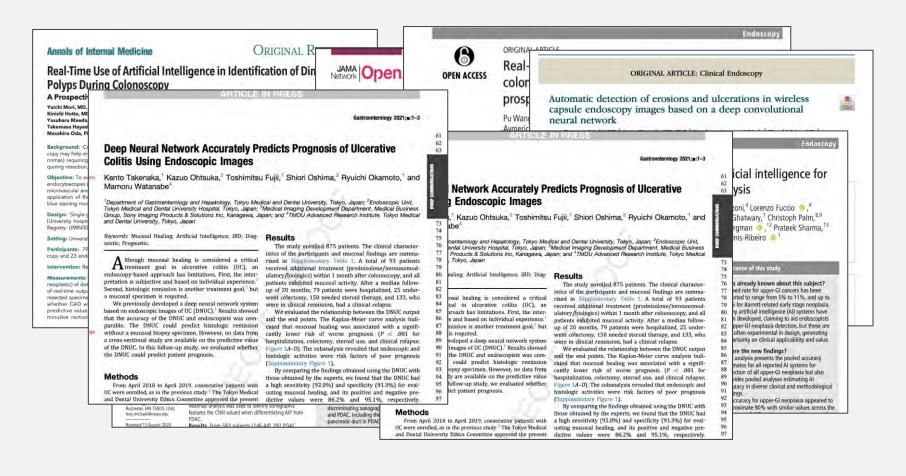


# **Learning Objectives**

 Summarize advances in artificial intelligence in the field of endoscopy and how they can be applied to current clinical practice



### Why is This Important?





OF GASTROENTEROLOGY

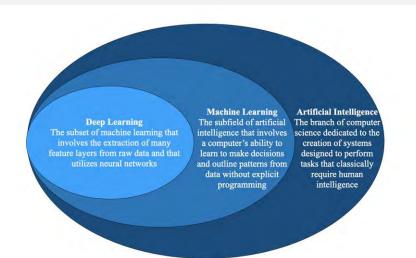
#### **Common Terminology in AI Research**

Artificial Intelligence: computer systems that can perform tasks that normally require 'human intelligence'. Examples: visual perception, speech recognition, natural language processing, self-driving cars

**Machine learning:** A set of computational methods that involves using mathematical models to learn to make decisions and outline patterns from data. Examples: Linear regression, boosted trees, random forests, support vector machines

**Deep learning:** A subset of machine learning that relies on multi-layered neural networks to extract information from multiple feature inputs to learn from complex inputs

**Computer vision**: technology that allows computers to "see" and interpret visual content (photos, video)

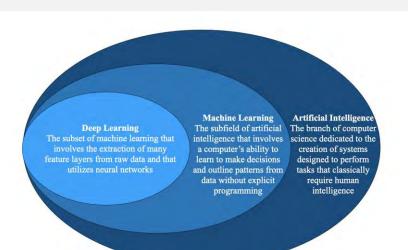




#### **Common Terminology in AI Research**

**Large Language Model:** Models that process vast amounts of text data (usually scraped from the internet)

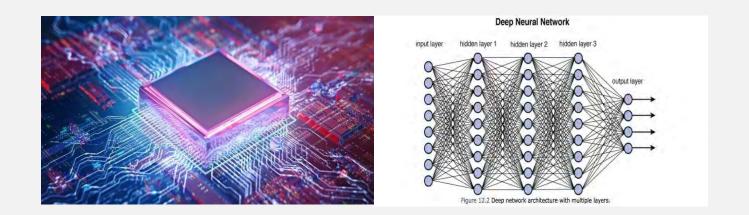
- Usually transformer architecture
- "Generative." Take an input text → predict the next word/token
- Adaptable





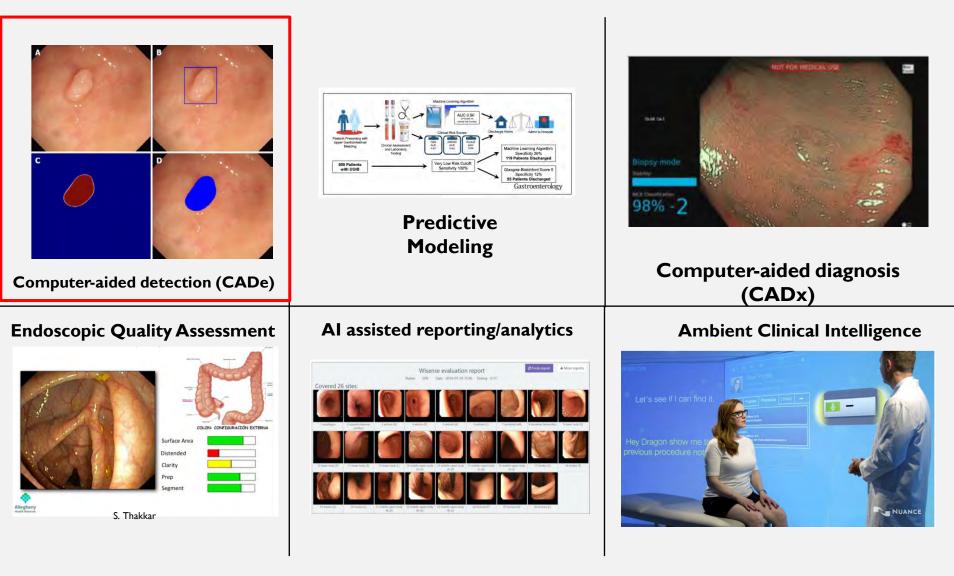
### Why Now? (2012-Present)

- Tremendous growth in computational power
- Availability of big data
- Advanced machine learning algorithms





### **Applications**



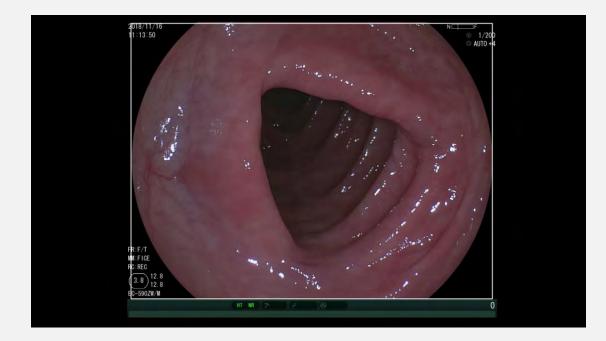
#### **Computer Aided Detection**

- The most 'advanced' application of AI
- Several FDA approved CADe systems in the U.S.
- Near-real time delineation of polyps during colonoscopy



Repici et al. Gastroenterology 5/3/20; 512-520.E7



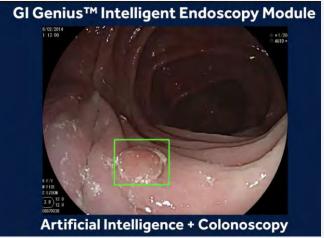


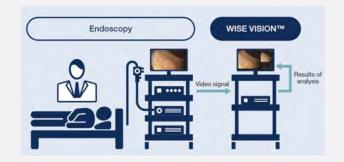
Glissen Brown et al. VideoGIE. 4/2020; P135-137



### **Computer Aided Detection**

- GI-Genius, Medtronic, Minneapolis, MN
- Endoscreener Wision, AI, Shanghai, China and Micro-Tech Endoscopy, Ann Arbor, MI
- Magentiq-Colo, Magentiq EYE LTD, Haifa, Israel
- SKOUT, Iterative Health, Cambridge MA USA and Provation, Minneapolis, MN
- More pending





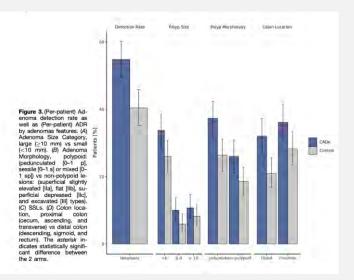


#### **The Evidence**

#### Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial

Alessandro Repici,<sup>1</sup> Matteo Badalamenti,<sup>1</sup> Roberta Maselli,<sup>1</sup> Loredana Correale,<sup>1</sup> Franco Radaelli,<sup>2</sup> Emanuele Rondonotti,<sup>2</sup> Elisa Ferrara,<sup>1</sup> Marco Spadaccini,<sup>1</sup> Asma Alkandari,<sup>3</sup> Alessandro Fugazza,<sup>1</sup> Andrea Anderloni,<sup>1</sup> Piera Alessia Galtieri,<sup>1</sup> Gaia Pellegatta,<sup>1</sup> Silvia Carrara,<sup>1</sup> Milena Di Leo,<sup>1</sup> Vincenzo Craviotto,<sup>1</sup> Laura Lamonaca,<sup>1</sup> Roberto Lorenzetti,<sup>4</sup> Alida Andrealli,<sup>2</sup> Giulio Antonelli,<sup>4</sup> Michael Wallace,<sup>5</sup> Prateek Sharma,<sup>6</sup> Thomas Rosch,<sup>7</sup> and Cesare Hassan<sup>4</sup>

- 685 patients undergoing screening, surveillance, or diagnostic colonoscopy across 3 endoscopy centers in Italy
- Patients randomized 1:1 to receive HDWL colonoscopy or Al-assisted colonoscopy (single screen)
- Significant increase in ADR (54.8% vs 40.4%) with a relative risk of 1.30 (95% CI, 1.14–1.45
- Higher APC
- No significant difference in withdrawal time or resection for FPs



Repici et al. Gastroenterology. 5/2020; 512-520.E7



#### **The Evidence**

#### META-ANALYSIS

#### Effect of computer-aided colonoscopy on adenoma miss rates and polyp detection: A systematic review and meta-analysis

Sagar Shah,\* Nathan Park,<sup>†</sup> Nabil El Hage Chehade,<sup>‡</sup> Anastasia Chahine,<sup>†</sup> Marc Monachese,<sup>†</sup> Amelie Tiritilli,<sup>†</sup> Zain Moosvi,<sup>§</sup> Ronald Ortizo<sup>†</sup> and Jason Samarasena<sup>†</sup> 😳

\*Department of Internal Medicine, University of California Los Angeles Ronald Reagan Medical Center, Los Angeles, <sup>3</sup>H. H. Chao Comprehensive Digestive Disease Center, University of California Irvine Medical Center, Orange, California, <sup>1</sup>Division of Internal Medicine, Case Western Reserve University MetroHealth Medical Center, Cleveland, Ohio, and <sup>5</sup>Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

- Meta-analysis of 14 RCTs containing 10,928 patients
- 52% increase in ADR in CADe vs. control (OR, 1.52; 95% CI, 1.39–1.67, P = 0.04, I2 = 47%).
- 65% reduction in AMR (OR, 0.35; 95% CI, 0.25– 0.49, P < 0.001, I2 = 50%)</li>
- 93% increase adenomas > 10 mm de- tected (OR 1.93; 95% CI, 1.18–3.16, P < 0.01, I2 = 0%).</li>
- Decrease in SSLMR

|                         | Comp. Assisted |         | Traditional |       | Odds Ratio |                    |      |                                | ds Ratio              |
|-------------------------|----------------|---------|-------------|-------|------------|--------------------|------|--------------------------------|-----------------------|
| tudy or Subgroup        | Events         | Total   | Events      | Total | Weight     | M-H, Fixed, 95% CI | Year | M-H, Fo                        | ed, 95% CI            |
| .4.1 Non-Tandem S       | tudies         |         |             | -     |            |                    | -    |                                | and the second second |
| rang 2019               | 152            | \$22    | 109         | 536   | 10.8%      | 1.61 [1.21, 2.14]  | 2019 |                                | · ·                   |
| ang 2020                | 165            | 484     | 132         | 478   | 12.4%      | 1.36 (1.03, 1.76)  | 2020 |                                | *                     |
| in 2020                 | 199            | 508     |             | 518   | 10.6%      | 2.05 (1.56, 2.58)  | 2020 |                                | *                     |
| ong 2020                | 58             | 355     | 27          | 349   | 3.2%       | 2,33 (1.44, 3.78]  | 2020 |                                |                       |
| epici 2020              | 187            | 341     | 139         | 344   | 8.9%       | 1.79 (1.32, 2.42)  | 2020 |                                | +                     |
| u 2020                  | 89             | 305     | 52          | 315   | 5,2%       | 2.06 [1.40, 3.02]  | 2020 |                                |                       |
| haukat 2022             | 326            | 682     | 297         | 677   | 22.0%      | 1.17 (0.95, 1.45)  |      |                                | * ·                   |
| epici 2022              | 176            | 330     | 147         | 330   | 9.7%       | 1.42 [1.05, 1.93]  | 2022 |                                | ar:                   |
| ubtotal (95% CI)        |                | 3530    |             | 3547  | 82.8%      | 1.56 [1.41, 1.73]  |      |                                |                       |
| atal events             | 1352           |         | 1027        |       |            |                    |      |                                | 10                    |
| leterogeneity. Chi? =   |                |         |             | 60%   |            |                    |      |                                |                       |
| est for overall effect  | Z = 8.53 (P    | < 0.000 | 01)         |       |            |                    |      |                                |                       |
| 4.2 Tandem Studie       | s              |         |             |       |            |                    |      |                                |                       |
| rown 2021               | 57.            | 313     | 48          | 110   | 3.4%       | 1.31 (0.78, 2.23)  | 2021 |                                |                       |
| amba 2021               | 111            | -172    | 93          | 174   | 4.6%       | 1.58 (1.03, 2.44)  | 2021 |                                |                       |
| ang 2020 (tandem)       | 78             | 384     | 66          | 185   | 5.4%       | 1.33 (0.87, 2.02)  | 2021 |                                | -                     |
| allace 2022             | 72             | 116     | 70          | 114   | 3.5%       | 1.03 [0.60, 1.75]  | 2022 |                                | +                     |
| ubtotal (95% CI)        |                | 585     |             | 583   | 17.2%      | 1.33 [1.05, 1.68]  |      |                                | •                     |
| otal evenis.            | 318            |         | 277         |       |            |                    |      |                                |                       |
| eterogeneity. Chil =    |                |         |             | 0%    |            |                    |      |                                |                       |
| est for overall effect. | Z = 2.38 (P    | = 0.02) |             |       |            |                    |      |                                |                       |
| otal (95% CI)           |                | 4115    |             | 4130  | 100.0%     | 1.52 [1.39, 1.67]  |      |                                | 1                     |
| otal events             | 1670           |         | 1304        |       |            |                    |      |                                |                       |
| eterogeneity: Chi" =    | 20.66, df =    | 11 (P = | 0.04); /    | = 47% |            |                    |      | 0.005 0.1                      | 10 200                |
| est for overall effect. | Z = 8.77 (P    | < 0.000 | 011         |       |            |                    |      | 6.005 0.1<br>Favors Traditiona |                       |

Shah et al. Journal of Gastroenterology & Hepatology 11/9/2022 Nov 9.



# **Tips and Tricks**



Figure 2. An example of a single monitor setup, where computer-aided detection output is displayed on the primary endoscopy screen. (Image @2020 Meditonic. All rights reserved. Used with the permission of Meditonic.)

Bilal et al. Am J Gastroenterol 7/2020; 115(7):963-966.



# **Tips and Tricks**

#### Using Computer-Aided Polyp Detection During Colonoscopy

Mohammad Bilal, MD<sup>1</sup>, Jeremy R. Glissen Brown, MD<sup>1</sup> and Tyler M. Berzin, MD, FASGE, FACG<sup>1</sup>

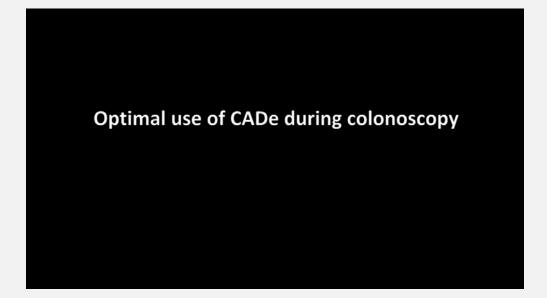
Am J Gastroenterol 2020;115:963–966. https://doi.org/10.14309/ajg.000000000000646; published online May 13, 2020

- Mucosal inspection techniques paramount
- Toggle on during withdrawal after cleaning
- Limit bubbles, suction polyps
- Toggle on during tool deployment but off during intervention

Bilal et al. Am J Gastroenterol 7/2020; 115(7):963-966.



# **Tips and Tricks**



Glissen Brown et al. VideoGIE. 4/2020; PI35-I37

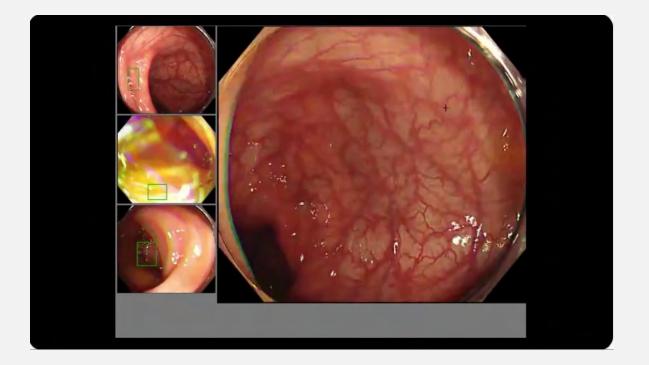


# Questions and Controversies in CADe

- Hold outs and delayed uptake
- Question of de-skilling and CADe in the training curriculum
- Lack of benefit in some trials (see above)
- Task specific "Al" sows doubt
- Cost



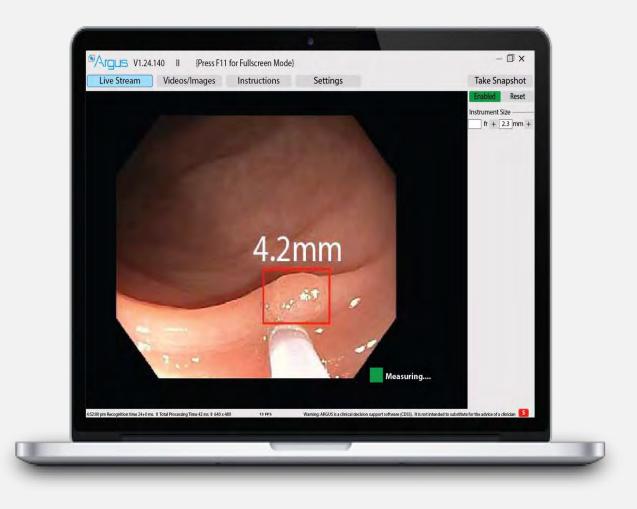
#### **Future Directions: Combined Systems**



Video Credit: https://lpixel.net/



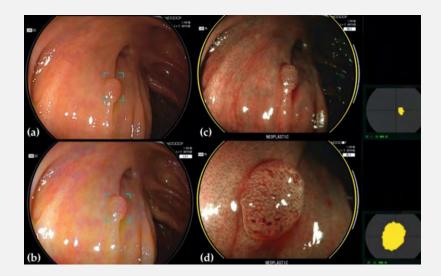
#### **Future Directions in Colonoscopy**

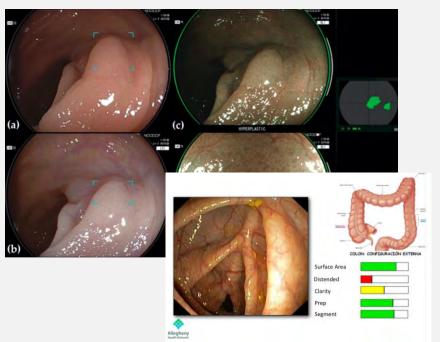


Images courtesy of EndoSoft



#### **Future Directions in Colonoscopy**





Kamitani et al. J Clin Med. 2022 May 22;11(10):2923 Image courtesy of Dr. Shyam Thakkar and Allegheny Health Network



- CADe/CADx for detection of UGI malignancies and BERN (Arribas et al Gut 2020)
- CADx for pathology slides (lizuka et al. Sci Rep 2020)
- VCE: Automatic detection of protruding lesions, flat lesions, CeD, parasites (Saito GIE 2020, Ding Gastroenterology 2019, Zhou Comput Biol Med 2017)

#### Endoscopy

#### ORIGINAL RESEARCH

Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis

Julia Arribas,<sup>1</sup> Giulio Antonelli <sup>•</sup>,<sup>2,3</sup> Leonardo Frazzoni,<sup>4</sup> Lorenzo Fuccio <sup>•</sup>,<sup>4</sup> Alanna Ebigbo <sup>•</sup>, <sup>5</sup> Fons van der Sommen,<sup>6</sup> Noha Ghatwary,<sup>7</sup> Christoph Palm,<sup>8,9</sup> Miguel Coimbra,<sup>10</sup> Francesco Renna,<sup>11</sup> J J G H M Bergman <sup>•</sup>, <sup>12</sup> Prateek Sharma,<sup>13</sup> Helmut Messmann,<sup>5</sup> Cesare Hassan <sup>•</sup>,<sup>2</sup> Mario J Dinis-Ribeiro <sup>•</sup>,<sup>1</sup>

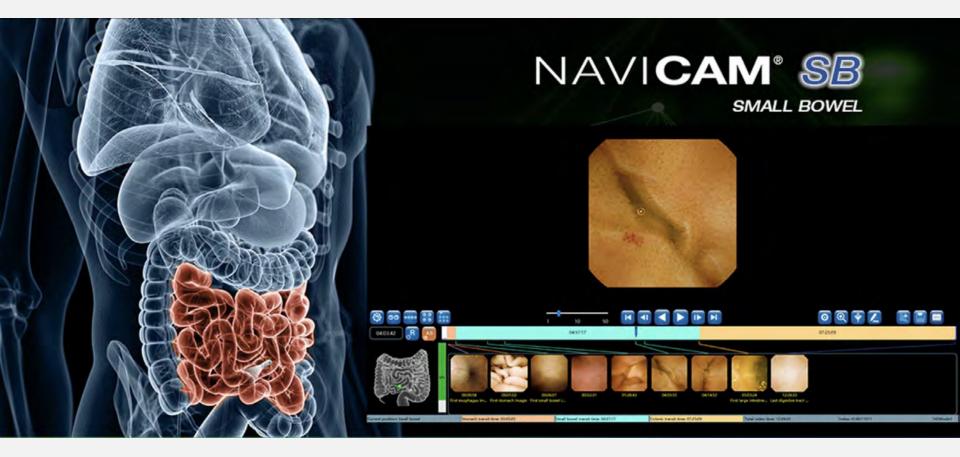


Figure 2. Representative images of protruding lesions correctly detected by the convolutional neural network (CNN) in the validation set (*blue box*, true lesion, *green box*, region identified as a protructing lesion by the CNN, number, the probability score determined by the CNN). The *blue* rectangular bounding boxes show the annotation of protruding regions as determined by experts. The green rectangular bounding boxes were applied by the CNN, with the name of lesion subcategory and its probability score.

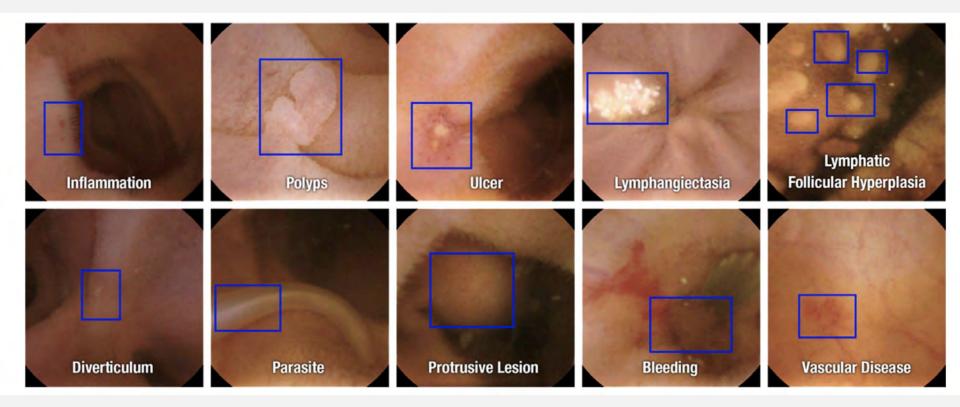
Saito et al. GIE. 7/2020; 92(1):144-151



OF GASTROENTEROLOGY



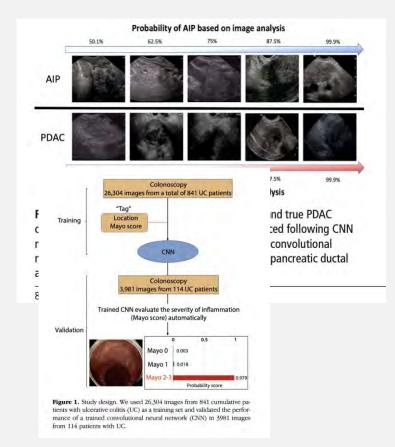




Saito et al. GIE. 7/2020; 92(1):144-151



- EUS: CADx for benign vs. malignant hepatic masses (*Marya GIE 2020*); AP vs. PDAC (*Marya Gut 2020*)
- IBD: Automatic segmentation of CTe images (*Stidham IBD* 2020) endoscopic RD and Mayo score (*Bossuyt et al Gut 2020; Ozawa 2019*)



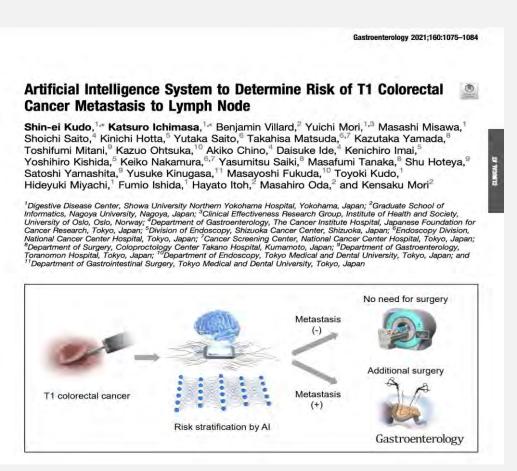
Marya et al. GIE. 5/2021; 93(5):1121-1130.e1. Bossuyt et al. Gut. 10/2020; 69(10):1778-1786.



- Predictive Modeling
- Natural Language Processing (automated report generation; ChatGPT)
- And more!



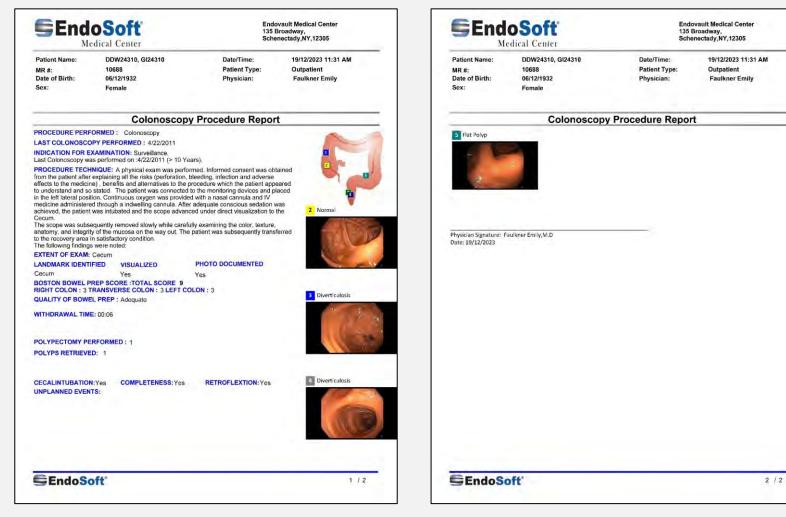
#### **Predictive Modeling**



Kudo et al. Gastroenterology. 3/2021; 160(4):1075-1084.e2.



#### **Natural Language Processing**



Images courtesy of Endosoft



#### **Generative Al And Foundation Models**

#### Figure. Artificial Intelligence (AI) 1.0, 2.0, and 3.0

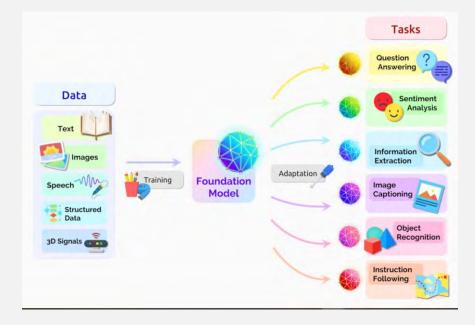
|                                        | 1950s                                                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Approximate<br>beginning year          |                                                                                                                                   | 2011                                                                                                                                                                                                                                                               | 2018-2022                                                                                                                                                                                           |  |  |  |  |  |  |
|                                        | AI 1.0 Symbolic AI and probabilistic models                                                                                       | AI 2.0 Deep learning                                                                                                                                                                                                                                               | AI 3.0 Foundation models                                                                                                                                                                            |  |  |  |  |  |  |
| Core functionality<br>and key features | Follows directly encoded rules (if-then rules or decision trees)                                                                  | Predicts and/or classifies information<br>Task-specific (1 task at a time); requires new<br>data and retraining to perform new tasks                                                                                                                               | Generates new content (text, sound, images)<br>Performs different types of tasks without new data<br>or retraining; prompt creates new model behaviors                                              |  |  |  |  |  |  |
| Training method                        | Rules based on expert knowledge are hand-encoded in traditional programming                                                       | Learning patterns based on examples<br>labeled as ground truth                                                                                                                                                                                                     | Self-supervised learning from large datasets to predict the next word or sentence in a sequence                                                                                                     |  |  |  |  |  |  |
| Performance<br>capabilities            | Follows decision path encoded in its rules.<br>Eg, ask a series of questions to determine<br>whether a picture is a cat or a dog. | Classifies information based on training:<br>"Is this a cat or a dog?"<br>"How many dogs will be in the park at noon?"                                                                                                                                             | Interprets and responds to complex questions:<br>"Explain the difference between a cat and a dog."                                                                                                  |  |  |  |  |  |  |
| Examples of<br>performance             | IBM's Deep Blue beat the world champion<br>in chess<br>Health care: Rule-based clinical decision<br>support tools                 | Photo searching without manual tagging,<br>voice recognition, language translation<br>Health care: diabetic retinopathy detection,<br>breast cancer and lung cancer screening,<br>skin condition classification, predictions based<br>on electronic health records | Writing assistants in word processors, software<br>coding assistants, chatbots<br>Health care: Med-PaLM and Med-PaLM-2, medicall<br>tuned large language models, PubMedGPT, BioGPT                  |  |  |  |  |  |  |
| Examples<br>of challenges<br>and risks | Human logic errors and bias in encoded<br>rules lead to limited capability with<br>real-world situations                          | Out-of-distribution problems (real-time<br>data differs from training data)<br>Catastrophic forgetting (not remembering<br>early parts of a long sequence of text)<br>Bias related to underlying training data                                                     | Hallucinations (plausible but incorrect responses<br>based solely on predictions)<br>Grounding and attribution<br>Bias related to underlying training data and<br>semantics of language in datasets |  |  |  |  |  |  |

#### Howell et al JAMA 2024 Jan 16;331(3):242-244.



#### Generative Al And Foundation Models

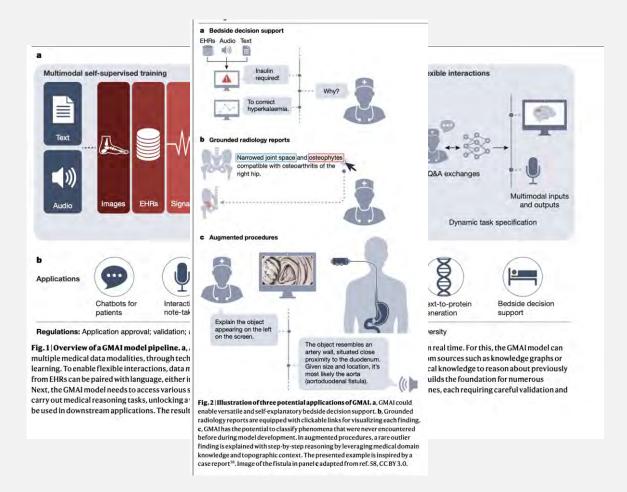
- Foundation models:
  - Eg ChatGPT, DALL-E2
  - Neural networks (eg transformer architecture)
  - Unsupervised learning
  - Broad, flexible outputs, generative



Bommasani et al arXiv:2108.07258



#### **Generalist Medical Al**



Moor and Rajpurkar et al. Nature 2023



#### **CME/MOC** Question:

Best Practices for CADe include all of the following except:

- a. Toggling the device off during insertion and cleaning and on during a "clean" withdrawal
- b. Toggling device on during intervention
- c. Toggling the device off during intervention
- d. Limiting bubbles and suction polyps during withdrawal

Joint Providership





#### **CME/MOC Answer:**

Best Practices for CADe include all of the following except:

a. Toggling the device off during insertion and cleaning and on during a "clean" withdrawal

#### **b.** Toggling device on during intervention

- c. Toggling the device off during intervention
- d. Limiting bubbles and suction polyps during withdrawal

Joint Providership





#### **Take Home Points**

- CADe is a solved problem in colonoscopy and multiple algorithms are FDA approved for clinical use
- Best practices are evolving but include careful insufflation and cleaning prior to use, toggling on during withdrawal and off during intervention
- Explosion in growth of other deep learning applications. CADe is only the beginning



# Thank you!

